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Abstract. The extended Hubbard model with on-site attraction and random infinite-range 
inter-site Coulomb interaction is studied for arbitrary band filling. In the strong-coupling 
limit the problem is mapped onto a system of hard-core bosons (local electron pairs) on a 
lattice described by the anisotropic pseudo-spin model with infinite-range random inter- 
actions-in close analogy to the standard Sherrington-Kirkpatrick spin-glass approach. 
With the use of thermofield dynamics as a substitute for the ‘n-replica trick’, and a one-loop 
approximation for the dynamic self-interaction, the stability of the mean-field-type solution 
with respect to the action of fluctuations is investigated in the parameter space including the 
temperature, degree of disorder and band-filling parameter. 

1. Introduction 

In a classical picture, superconducting glass phases can occur in granular super- 
conductors when the phase of the superconducting order parameter is frustrated in 
loops of Josephson-coupled grains (Shih et a1 1984, Ebner and Stroud 1985) where the 
frustration appears as a result of an applied magnetic field. Phase diagrams which include 
the glass phase were obtained either by Monte Carlo simulation (Shih et a1 1984, Ebner 
and Stroud 1985) or by the field theoretic approach via the ‘n-replica trick’ to the model 
of disordered arrays of Josephson-coupled grains (Sajeev and Lubensky 1986). This 
model assumes the existence of a gap energy inside the grains. 

The need for a quantum theory, when grains are smaller than 100 A was stressed by 
Deutscher (1984) and by Sajeev and Lubensky (1986) and an appropriate theory based 
on the weak-coupling regime was then constructed to describe the superconducting glass 
features (Oppermann 1987) in the context of a quantum theory of localisation and 
superconductivity. Here, the possibility of superconducting glass phases appeared as a 
result of the destruction of conventional superconductivity at strong disorder near the 
metal-insulator transition. Under the increasing disorder, first the gap disappears and, 
after an interval of gapless superconductivity, a transition into a glass state with vanishing 
BCS order parameter occurs (0pperma.nn 1987). Because of this, no global supercurrent 
and no Meissner effect exists below the glass transition temperature. However, for the 
high-T, superconductors exhibiting glass features in the Meissner state (Muller et a1 
1987) it has been known for some time that the tight-binding approach with strong 
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electron-electron correlations appears to be more appropriate than the nearly-free- 
electron picture. 

The analogy between spin glasses and the problem of highly localised electrons 
interacting via the Coulomb potential is well known (Efros and Shklovskii 1975, Efros 
1976). In this so-called 'electron glass' on cooling from the high-temperature phase, 
Monte Carlo simulations indicate spin-glass-like freezing (Davies et a1 1982). 

From this point of view the investigation of glassy properties with simultaneous 
reference to the microscopic mechanism of superconductivity has been pursued recently 
by considering the strong-coupling regime and analysing the extended Hubbard model 
with on-site attraction and random inter-site Coulomb energies (KopeC and Wrdbel 
1990). Within the mean-field theory a multiplicity of phases has been found including 
the normal (N)  or non-glass phase, the superconducting (sc) phase, the superconducting 
glass (SCG) phase (which is non-ergodic and predicted to be in the Meissner state) and 
the charge glass (CG) phase (which is non-ergodic and non-superconducting). However, 
the results presented were confined to the half-filled band only. In the present paper we 
extend the above analysis to the arbitrary band-filling case and calculate phase diagrams 
for the model by considering the parameter space which includes the temperature, 
degree of disorder and band-filling parameter. 

2. The model Hamiltonian and order parameters 

The system of strongly correlated electrons under study is described by the Hubbard 
Hamiltonian with negative on-site Coulomb energies given by 

H =  ~ r i j u ~ u i o - ~ ~ ~ ~ n i ~ n i ~ + ~ ~  v i j n i o n j o - p ~ n i o  
ijo i ij io 

oo' 

where a,,and a; are the annihilation and creation operators, respectively, for an electron 
with the spin projection 0 at the ith lattice site and the electron number operator is given 
by n, ,  = a;a,,. Furthermore, - 1 U1 is the effective attractive potential on a lattice site 
(e.g. due to the strong electron-phonon coupling) while V,, refers to the inter-site 
Coulomb potential (which, in general, can be either repulsive or attractive). Finally, t,, 
is the matrix element of the electron transfer between the lattice sites, while p denotes 
the chemical potential. 

To account for disorder and frustration in the model Hamiltonian (l), randomness 
in the variables V,, is introduced (off-diagonal disorder). In physical terms this would 
mean for example a structural disorder (random vacancies and displacements) which can 
be described by a suitable distribution of random variables P(V,). The most convenient 
choice is Gaussian and referring to the work of Sherrington and Kirkpatrick (1975) one 
writes 

P(v,,) = ( N / ~ J ~ V ~ ) ' ' ~  ~ x ~ ( - N v ; / ~ v )  (2) 
where V denotes the variance of the distribution and N is the number of lattice sites. 
The meaning of expression (2) is that we are considering the case of infinite-range 
interactions between the lattice sites (the number of nearest neighbours for a given 
lattice site is equal to the number N of lattice sites) which is justified by the long-range 
nature of interactions originating from the Coulombic character of the inter-bond 
potential. 
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In the strong-coupling regime that we are interested in, the Hubbard Hamiltonian 
(1) can be mapped onto a pseudo-spin effective Hamiltonian describing the system of 
local electron pairs (bipolarons in the case of strong electron-phonon coupling) which 
can be seen as a gas of hard-core bosons on a lattice (Robaszkiewicz et a1 1981, 1982, 
and references therein). The resulting effective pseudo-spin Hamiltonian takes the form 

H = - Jij(S,iS,, + S,;Sy,)  + KijS,,S,, - (2s,; + 1) 
ij i j  i 

(3) 

where J ,  = 2tij/IUI, Kij = Jij + 2V, while S,, ( a  = x ,  y ,  z ;  i = 1 , .  . . , N )  are the &spin 
matrices related to the local pair annihilation operators b, and creation operators b: in 
the following way: 

S,; = (b; + b:) /2  

I ?  

S,i = i (b;  - b:)/2 S 21 = 4 - b:bi ( 4 )  
where b' = a+ a:J and b ;  = a ,  a ,  i . The pseudo-spin Hamiltonian (3) is supplemented 
by the local pair number conservation condition 

where nb denotes the number of local pairs, ( . . . ) is the thermal average while ( . . . ),, 
refers to the configurational averaging 

(6) 

Since Vjj are the same for all pairs of pseudo-spins, one has 

(Vi),,  - ( v i j > f v  = V 2 / N  (7) 
and, in order to ensure a sensible thermodynamic limit, one has also to have Jij = J / N ,  
i.e. ti, = t / N  and U = U / N .  

The superconducting order parameter A describes the off-diagonal long-range order 
(phase coherence between local pairs) and corresponds to the expectation value of the 
transverse pseudo-spin component 

A = ( ( s x i ) ) a v .  (8) 
Because of the disorder present, in a manner similar to the conventional spin-glass 
problem, one introduces the Edwards-Anderson (1975) order parameter 

4 = lim ((Sz;(O)Szi(t)))av ( 9 )  
t'5 

in order to single out the glassy phase. By definition, S,,(t) = a  - nbj(t) 
(nbi( t )  = b: ( t )b , ( t ) )  is the pair occupation number at the time t and the meaning of the 
quantity ( 9 )  is that it represent the fraction of local pairs that get stuck in configurations 
in phase space that would not change over any finite time, distinguishing between the 
glass (q  # 0) and non-glass (q  = 0) phases. However, as has been pointed out earlier 
(Kopek and Wrobel 1990), the definition ( 9 )  is able to single out the glassy phase only 
in the half-filled band case (nb = 1) .  In pseudo-spin language (3) this is the case of zero 
external field ( p  = 0). For an arbitrary band filling, it follows that, for any temperature, 
q # 0 since a longitudinal field is present. In such a situation the parameter q alone is 
ineffective in characterising the glassy phase. In this case the glass transition would be 
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analogous to the transition according to de Almeida and Thouless (AT) (1978) rather 
than to the zero-field spin-glass transition. 

3. Stability analysis 

In the following, we report on the stability analysis of the mean-field theory of the 
infinite-range interaction system described by the Hamiltonian (3) and the distribution 
(2) which will be performed in the space of parameters including the temperature, degree 
of disorder and band-filling number (i.e. kgT,  V and ab, respectively). 

The method that we use to handle both the disorder and the quantum features of the 
problem has been described earlier (KopeC and Wrobel 1990). It relies on thermofield 
dynamics (TFD) Umezawa et a1 1982), a real-time finite-temperature quantum field 
theory. The best merit of this method is that, while avoiding the use of the "replica 
trick' to perform the quenched average, it deals directly with the physical observables 
such as response and correlation functions. 

In order to incorporate thermal effects in TFD, one is forced to double the degrees of 
freedom of the system under study by associating with any operator A (= A ' )  a tilde 
conjugate operator A ( = A 2 ) .  In particular the dynamics are generated by the so-called 
thermal Hamiltonian H :  

A = H - H = H[S'] - H[S2] (10) 
where H i s  the original Hamiltonian of the system while H refers to the tilde conjugate 
counterpart. The basic concept of TFD is the notion of the thermal vacuum l O ( P ) )  
constructed in such a way that the quantum expectation value between the bra and ket 
thermal vacua corresponds to the statistical average (Umezawa et a1 1982) 

(O(P>I * * lO(P)) = Tr[exp(-PH)I * . . /Wexp(-PH)I (11) 
where P = l/kBT. 

causal Green functions in a form of the functional integral (Kopek and Wrobell990) 
To proceed, one starts from the disorder-averaged generating functional for TFD 

(Z [VI>~~  = 1 n Dpla" n D e a B  exp( -Ny[cp ,  QI + f4711) (12) 
a a  aB 

where the single-site dynamic Lagrangian reads 

ge[cp, Ql=4[(plxx, plx)+(ply, ply)- (pl,,, plz)1+Tr(Q2>-1n(@[[cp, Ql). (13) 
Here, Q[q] denotes the source term the precise form of which depends on the kinds of 
correlation that we are interested in. Furthermore, 

+= 
( 9 0 ,  Val = 1 d t ~  ~ ~ ( t ) ~ ~ ( t )  

-z ff 

Tr(Q2) = d t j + f f i  dt '  2 QaB(t, t')QB"(t', t )  (14) 
--m --r aB 

where @(t, t ' )  represents a 2 x 2 symmetric matrix field. Subsequently, 

@[v,  QI = (0, Pl&,,(-9 +", P )  (15) 
where 10, P)  denotes the thermal vacuum corresponding to the single-body Hamiltonian 
H o  = pCi (2S, + l ) ,  while 
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Up,p( -%,  +%) = Texp ( - i 1“ d t  1-y dt‘ f i p , Q ( t ,  t’)) (16) 
--x 

is the time-ordered exponential resulting from the interaction picture. The time-depen- 
dent effective single-site thermal Hamiltonian then takes the form 

fi,.,(t, t’) = c {(2&,J)1/2[glxa(t)Sxa(t) + 9J,”(W,”(t> 
aB 

- 9~:(t)S:(t)]d(t - t’)d,@ + ~ ( E , E ~ ) ~ / ~ V Q ~ @ ( ~ ,  t’)Sf(t)f(t’)} 

S:(t) = exp(ifiot) s:(o) exp(-itiot). 

(17) 
where E ]  = 1, 
the interaction picture as 

= - 1 and the pseudo-spin operators appearing in (17) are defined in 

(18) 
The effective dynamic thermal Hamiltonian (17) contains the fluctuating local field 
gl:(t) which is related to the superconducting order parameter (8) and the pseudo-spin 
self-interaction Q@(t, t’) connected with the glass order parameter (9) (cf KopeC and 
Wr6bel 1990). Both quantities have to be calculated self-consistently via the saddle- 
point method (formally exact in the N +  % limit). The resulting equations are then 
(KopeC and Wrobell990) 

where O(z) = [ (2JA)2  + ( p  + 
number of local pairs takes the following form: 

and J = 2t2/1 Ul. The constraint ( 5 )  fixing the 

As emphasised earlier for any band filling different from nb = 8 it follows from equations 
(19) and (20) that, for arbitrary temperature, q # 0 because the non-vanishing chemical 
potential p plays the role of an external field in our pseudo-spin description. Therefore 
the glass transition in this case would be analogous to the AT (1978) transition rather 
than to the zero-field glass transition. This implies that, in the general case (nb # 1),  
equations (19) and (20) have to be supplemented by the stability condition in order to 
determine the glass transition boundaries in the space of parameters kgT, V and nb. It 
should also be pointed out that the stability condition determines the limits of the 
applicability of the single-glass-order-parameter (9) description. In the instability 
regions, one expects the precise characterisation of the glassy phase to be obstructed 
with similar difficulties as in the case of the low-temperature phase in magnetic spin 
glasses where, in order to resolve these difficulties, an infinite number of glass order 
parameters have to be introduced (Parisi 1979). 

A physically sensible solution must be stable, i.e. has no negative eigenvalues of the 
matrix of the quadratic form Rxv resulting from the expansion of the effective action 
(13) in terms of fluctuations about the saddle-point value. Specifically, 

R x y  = d 2 2 [ q ,  QI/(dx ~ ~ ) I X = X ~ . Y = Y ~  (21) 
where X ,  Y = pl,(t), Q“P(t, t ’ )  and a, /3 = 1,2 ;  a = x , y ,  z .  Owing to the symmetry 
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involved in determining the glass phase stability boundary, one has to consider the 
fluctuations in the Q-field sector of the matrix (21). Furthermore, since 

= Tr[SQGQ - (4V)' GQGr(z)  &2G,(z)]* + O((6Q)3) (22) 

where G:D(z) = E , E ~ G ~ P ( Z )  is the thermofield causal Green function with the Gaussian 
noise component which acts as a random longitudinal static field to generate time- 
persistent autocorrelations (cf KopeC et a1 1989) and 

Furthermore, the Fourier-transformed Green function reads 

Gnp(w, z )  = UZ(w, z){l/[l - VQr(w,  z)Z(o, ~>l>ll"p (24) 

where Q F p  = E E Q"p. Working out terms quadratic in fluctuations in equation (22), 
one finally obtains the stability condition in the form ? p  

where 

K zz ( z )  = 1[ ( Z A )  * /e3 ( z ) ]  tanh[ e( z ) /2]  

+ i [ ( p  + 4 v ~ q ~ ' ~ ) / O ( z ) ] *  sech2[/30(z)/2]. (26) 
Equations (25) and (26) constitute an analogue of the AT stability condition. For nb = 4 
(p  = 0), approaching from the high-temperature phase, one obtains q = 0 as the solution 
of equation (19). Above the glass freezing temperature this solution is stable but below 
this temperature the solution is unstable and so must be rejected. In fact, below the glass 
freezing temperature the solution with q # 0, as happens for nb # 8, also shows regions 
of instability as follows from the inequality (25). In order to single out these regions, one 
has to solve equations (19) and (20) self-consistently by observing equation (25) as a 
constraint superimposed on the solution for the order parameters. 

For arbitrary band filling nb the numerical solution of equations (19), (20) and (25) 
for the order parameters A and q gives the phase diagrams depicted in figures 1-4, where 
the following phases emerge. 

(i) Normal conducting (N) phase. This does not exhibit glassy behaviour (stable in 
the sense of the criterion (25)). 

(ii) Superconducting (sc) phase. The local electron pairs exhibit phase coherence 
(long-range order characterised by the non-vanishing parameter A).  

(iii) Superconducting glass (SCG) phase. In this case, both the off-diagonal long- 
range superconducting order parameter and the diagonal glass order parameter q are 
predicted to coexist. In the case of non-half-filled band the glassy phase has to be 
determined via the stability condition (25) where the glassy phase occurs in the regions 
of instability of the solution for A and q.  Here, the system possesses global phase 
coherence; however, owing to the inherent instability the system of local pairs is stuck 
in a particular configuration in phase space and cannot easily relax into another con- 
figuration, implying hysteresis and as is typical for glasses non-ergodic behaviour. 
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Figure 1. Phase diagram of the system in parameter space: the temperature kBT,  band-filling 
number nh and degree of V disorder. 

0 5  

0 0.5 3 0 5  

Figure2. V-Tphase diagram for several values of 
band-filling parameter nb: line a ,  0.5; line b, 0.7; 
line c, 0.9. 

Figure 3. T-nb phase diagram for different 
o s  % values of the reduced variance of the Gaus- 

sian distribution V/J:  (a) 0; (b )  0.6; (c) 1. 

3 
1 2 n , - l  

Because of the non-vanishing superconducting order parameter A the SCG phase is 
predicted to be in the Meissner state. 

(iv) Charge glass ( C G )  phase. Here, A = 0 but the system exhibits instabilities as in 
(iii). In this state the global phase coherence is suppressed but glassy features are present. 
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Figure4. V-nb phase diagram for different 
values of the reduced temperature k,T/J: 
( a )  0; ( b )  0.25; ( c )  0.5. 

The presented phase diagrams were obtained for a Gaussian distribution of random 
inter-site Coulomb energies. Of interest are other distributions of Vijsuch as the Gaussian 
distribution with a non-vanishing mean which opens the possibility, in addition to the 
phases presented in (i)-(iv), that the charge disproportionation phase is a kind of state 
with modulated charge density. 

4. Concluding remarks 

In this paper we have attempted to understand the problem of disorder and glassy 
behaviour in a system of strongly correlated electrons described by the extended Hub- 
bard model with negative on-site Coulomb energy-from knowledge of the conventional 
spin-glass problem. In particular, the system under study maps onto a pseudo-spin 
Heisenberg model with random interactions with conserved longitudinal ‘magnetisation’ 
as a consequence of fixed band filling. The transverse ‘magnetisation’, in turn, refers 
to the long-range off-diagonal superconducting order parameter due to the negative 
Coulomb energy. In close analogy to the magnetic systems the glass order parameter can 
be introduced and by using the analogy between the chemical potential and longitudinal 
‘magnetic field’ the stability criteria follows in a similar way to the well known AT analysis. 
However, to include the effect of the real magnetic field in the system, one has to couple 
the electromagnetic vector potential to the kinetic term in the Hamiltonian (1) in a 
gauge-invariant manner which would enable one to single out the superconducting glass 
phase boundary as a function of the external applied magnetic field. We hope to return 
to this question in future work. 
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